Injured Avatars: The Impact of Embodied Anatomies and Virtual Injuries on Well-being and Performance

Person in VR with anatomical and injured body, completing line tracing task


Human cognition relies on embodiment as a fundamental mechanism. Virtual avatars allow users to experience the adaptation, control, and perceptual illusion of alternative bodies. Although virtual bodies have medical applications in motor rehabilitation and therapeutic interventions, their potential for learning anatomy and medical communication remains underexplored. For learners and patients, anatomy, procedures, and medical imaging can be abstract and difficult to grasp. Experiencing anatomies, injuries, and treatments virtually through one’s own body could be a valuable tool for fostering understanding. This work investigates the impact of avatars displaying anatomy and injuries suitable for such medical simulations. We ran a user study utilizing a skeleton avatar and virtual injuries, comparing to a healthy human avatar as a baseline. We evaluate the influence on embodiment, well-being, and presence with self-report questionnaires, as well as motor performance via an arm movement task. Our results show that while both anatomical representation and injuries increase feelings of eeriness, there are no negative effects on embodiment, well-being, presence, or motor performance. These findings suggest that virtual representations of anatomy and injuries are suitable for medical visualizations targeting learning or communication without significantly affecting users’ mental state or physical control within the simulation.

IEEE Transactions on Visualization and Computer Graphics

Presented at ISMAR 2023 in Sydney. See the video below for a quick visual introduction.

Message us regarding access to the code, as it contains proprietary packages.