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Abstract—Search tasks can be challenging for blind or visually
impaired people. To determine an object’s location and to
navigate there, they often rely on the limited sensory capabilities
of a white cane, search haptically, or ask for help. We introduce
MR-Sense, a mixed reality assistant to support search and
navigation tasks. The system is designed in a participatory
fashion and utilizes sensory data of a standalone mixed reality
head-mounted display to perform deep learning-driven object
recognition and environment mapping. The user is supported in
object search tasks via spatially mapped audio and vibrotactile
feedback. We conducted a preliminary user study including ten
blind or visually impaired participants and a final user evaluation
with thirteen blind or visually impaired participants. The final
study reveals that MR-Sense alone cannot replace the cane but
provides a valuable addition in terms of usability and task load.
We further propose a standardized evaluation setup for replicable
studies and highlight relevant potentials and challenges fostering
future work towards employing technology in accessibility.

Index Terms—blind and visually impaired people, accessibility,
mixed reality

I. INTRODUCTION

According to the World Health Organization (WHO), 295
million persons are impacted by significant visual impairment
and 43 million persons are blind [1]. Visual impairment
and blindness can have many characteristics, for example,
a remaining light-dark distinction, or a restriction of color
perception. The type of limitation and the time of the onset
of the impairment is crucial. People with early blindness
often find it easier to cope with everyday life challenges
than people who previously relied on their sense of vision.
These effects are becoming increasingly important because of
the aging population [2]. Two common examples where the

Fig. 1: MR-Sense in a use case scenario. The head-mounted
display allows for 3D sensing, deep learning-based object
recognition, and object mapping. An obstacle detection warn-
ing provides distance-based vibrotactile feedback via a smart-
watch for collision prevention. Audio feedback guides the user
in search tasks.

consequences of visual limitations become apparent are the
search for objects [3], [4], and the collision-free navigation
to them. Identifying objects outside the sensing area of their
usual assistive aid [5] can become a major challenge for blind
or visually impaired people (BVIP), as they need to haptically
scan the environment or ask for help. Accidents often occur
on the person’s upper body, as this area is not sensed by
common assistive aids [6]. Searching in an environment where
the location of an object is unknown or forgotten is difficult,
time-consuming, and often frustrating [3]. Assistive aids like
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the white cane offer immediate, analog audio-haptic feedback
to assist BVIP for navigation. However, to locate and find
an object additional haptic interaction via hands is required.
In contrast, visual assistance services, to locate objects faster
such as BeMyEyes [7], typically depend on external help and
have limited availability.

Object search consists of two steps: first, locating the
object, and second, safely navigating to it while avoiding
obstacles. Existing approaches address mainly either the object
localization aspect [8]–[10] or the navigation part [11]–[15]
separately or identify one single object of interest in the current
field of view (FoV), and navigate to it [16], [17].

A. Contribution

In this paper, we propose MR-Sense, a mixed reality (MR)
audio and vibrotactile environment search assistant, developed
in a participatory fashion with BVIP and evaluated in our
standardized setup. We contribute a standardized setup to im-
prove comparability and reproducibility among future studies
for assistive systems.

MR-Sense utilizes a 3D-spatial scan of the environment to
memorize located objects and provides non-contact obstacle
warnings through gesture control and vibrotactile feedback.
Our approach utilizes deep learning-based object recognition
and 3D sensing, enabling it to identify and announce objects
even beyond the current FoV of the head-mounted display
(HMD). The system provides audio feedback with clockwise
indication, distance, and height from the user’s standpoint.
Unlike smartphone-based approaches, the user’s hands remain
free when using MR-Sense, see Fig. 1. For the user, MR-
Sense provides assistance during the hands-on search process
by precisely identifying the location of objects. Thus, it
minimizes the need for extensive haptic interaction with the
environment, allowing the user to focus on sensing one specific
object.

II. RELATED WORK

Extending the sensing capabilities of assistive aids for BVIP
has been addressed commercially [7], [18], [19] and in many
research directions ( [12]–[14], [20]–[22]). BVIP most often
use their white cane or a guide dog for navigation [5]. To
extend their reality using a HMD, they would prefer an
adjustable, context-sensitive and customized approach [23].

A. Obstacle Avoidance and Navigation

While extending the white cane [12], [13], [22] is most
reasonable, visual processing enabled by cameras can assist
the users too. Zoller et al. [14], [20] use an RGB-D camera
(Microsoft Kinect) and provide audio and haptic feedback in
the case of obstacles. Chaccour and Badr [24] proposed an
approach, where a smartphone interacts with a remote server,
markers and indoor cameras to help BVIP navigate. Hsieh
et al. [25] utilize a glove to provide vibrotactile feedback
for navigation. In another work, Hsieh et al. [26] combine
audio feedback, a smartphone and a haptic glove for outdoor
navigation.

To tackle the challenge of stair navigation, Zhao et al. [27]
utilized projection-based augmented reality (AR), smart-
glasses, and sonification. While previous approaches were, for
example, marker-based [20], [24], nowadays deep learning-
based approaches are used more frequently [15], [28]. Hsieh et
al. [28] utilized an RGB-D camera and a convolutional neural
network (CNN) to perform semantic segmentation and find
a walkable path, such as outdoor sidewalks and crosswalks.
Zhang et al. [15] used images captured by a HMD and
fed them into a transformer-based approach, executed on a
portable GPU, to identify a walkable path and transparent parts
in the environment like glass doors. Katz et al. [16] addressed
finding, for example, traffic lights using geolocalization and
object identification.

B. Object Identification and Localization

Navigation and obstacle avoidance is one part of safely
navigating to a desired object, the other part is identifying
the object of interest. Jafri et al. [29] addressed object search
utilizing camera-based object detection and RFID tags. Gau-
tam et al. [30] identified objects in images and provided
proximity navigation towards them via audio. Eckert et. al. [9]
and Schieber et al. [10] used a keyword to scan the whole
image currently captured by a HMD to identify objects. Lee
et al. [17] optimized object localization using hand cues to
identify objects near the user’s hand. Chen et al. [31] combine
hand tracking and object recognition to announce distances
indicating arm length. Huppert et al. [8] proposed a different
method for object grasping using a drone and haptic feedback
in unknown environments. Instead of deep learning-based
object identification, they utilized an OptiTrack system to
identify objects.

III. PRELIMINARY INTERVIEWS

The focus of the initial qualitative interviews was to i)
identify what kind of assistive aids BVIP use, ii) how they
handle an object search, iii) if they would be interested in
using a MR-based audio and vibrotactile guidance assistant,
and iv) how they would like to interact with such a system. For
the latter, a preliminary prototype of MR-Sense and potential
features were orally described. Each interview took 30 to 45
minutes on average.

A. Participants

To better understand BVIP’s daily challenges and allow
for a design process, we conducted semi-structured qualitative
phone interviews with N = 10 participants (M = 57.7, SD =
14.99 years, five male, five female). Seven participants were
blind and three were visually impaired. Two of the blind
participants were sensitive to light.

B. Preliminary Results

Regarding our focus on object search (e.g., moved objects
by others or forgetting where the object is), the participants
either ask others for help (N = 2) or search for them (N =
5). In familiar environments such as one’s own home, objects
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can be inadvertently misplaced or rearranged by guests (N =
3). The object search was pointed out as time-consuming and
cumbersome. (“I spend a lot of time searching for things.”
and “Searching is sometimes frustrating.”). For navigation, the
majority appreciates the white cane (N = 8).

After explaining our idea we asked whether they would
like to have such an assistive system and how they would
like to interact with it and receive feedback. Sensing objects
outside of the sensing area of a white cane was mentioned
as useful. In general, they pointed out that such a system can
improve independence as they are often irritated by people
yelling “Attention, attention!” (N = 3), as they don’t know
what to be attentive to. To activate the system, voice activation
(N = 6) or multiple activation options (N = 3) could be
useful. They further mentioned that an activation via touch
is difficult, as one hand is already busy with the white cane.
In terms of making distances audible, distances larger than
ten meters were classified as hard to imagine (N = 2) while
distances below ten meters were noted as sensible to imagine
(N = 7). The combination with a direction indication was
stated as suitable and specifically the indications by means of
a clock were suggested (N = 3).

C. Derived Design Choices

A system like MR-Sense could be useful in daily life as
object search was noted as time-intensive and cumbersome
(D1). Since it was pointed out that voice activation could be
beneficial, we determined to use this as the initial activation
for the system (D2). We decided to identify objects and map
them on a 3D map, so that object search can be supported
even if the object is not in the current FoV of the HMD
(D1). To announce an object’s position clockwise indications
and distances in meters were noted as good to imagine (D3).
Furthermore, it was mentioned that objects, that are outside the
sensing range of the white cane, are a potential risk (D4). For
this reason, we add vibrotactile feedback via a smartwatch as
a distance indicator to support the user earlier with warnings
about potential obstacles (D4). Based on our interviews, we
concluded that:

• (D1) A system to support object search in known and
unknown environments is useful (N = 7)

• (D2) The use of voice activation would be beneficial
(N = 6)

• (D3) Distance indications using clockwise indications are
useful (N = 3)

• (D4) The system should be aware of other obstacles while
navigating to the desired object (N = 3)

D. Hypotheses

Our system, MR-Sense supports object search and naviga-
tion. Searching for objects can be frustrating especially when
the white cane cannot sense the object. Our system can identify
objects if they were captured at some point by the HMD
camera, thus we hypothesize H1: Our system will reduce the
search time and walked distance in object search tasks.

Moreover, MR-Sense will only be used for a short time
period and introduces additional feedback compared to the
white cane. We hypothesize H2: The use of our (unfamiliar)
system will lead to a higher workload compared to the white
cane as daily assistive aid.

Based on the information gained from the preliminary
discussion, the white cane is very useful and valuable for
BVIP. Thus, we hypothesize using the combination of MR-
Sense and the white cane will result in a higher usability and
user experience than purely using our system, which leads to
H3: The combination of the white cane and MR-Sense will
score higher compared to only using our system in terms of
usability and user experience.

IV. SYSTEM IMPLEMENTATION

MR-Sense is built using Unity, Python and Swift and runs
on a HMD (HoloLens 2), a smartwatch (Apple Watch Series 6),
and an external server1. Fig. 2 depicts MR-Sense.

A. Object Localization

User interaction with the system primarily relies on voice
input (D2). Voice commands initiate object searches using
class names as keywords, like laptop or umbrella. Upon
detecting the object’s position within the HMD’s sensory data,
the system provides audio feedback in a clockwise indication,
along with distance and height information for the searched
object (D3), see Fig. 2.

Internally, MR-Sensecompares the stated class name with
recognized objects. If the object hasn’t been recognized yet,
the class name is saved, and the system announces, ”Your
object was not found yet. As soon as it is noticed, you will
be informed.” Once the object is identified, its location is
announced. If multiple objects of the same class are detected,
the latest one is reported. We employ the Yolo5s [32], a real-
time processing model, for object detection using pretrained
weights from the COCO dataset [33]. We set a threshold
for YOLO5s to 35%/45% (confidence/IoU). We tested with
different person heights and head orientation (from 1.50 meters
up to 1.80 meters). The confidence ranged depending on the
distance of user to the object from 76% at three meters up
to 91% at one meter. For distances over three meters, the
confidence decreased.

In detail, an external server hosts a RESTful API for
querying information. When the application starts, the HMD
sends images to the server. The server runs Yolo5s, returning
the detected objects’ class names, x- and y-center coordinates
to the HMD. These 2D object center coordinates are projected
back into the HMD camera coordinate system. Our system uti-
lizes the HMD’s 3D map and combines it with object detection
results using a sphere cast. This process approximates the 3D
position of the object. Based on the confidence of the object
localization, spatial mesh limits were set to three meters in x,
y, and z axes. However, object positions beyond this threshold
can still be identified if the object was previously mapped.

1The source code will be published with the paper
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Fig. 2: Overview of MR-Sense. A server handles incoming requests with images and distance measures (top left, bottom left).
The object which is searched can be announced via its class name (top center). MR-Sense announces its approximated location
(top right). With the distance measure, the person can get an understanding of distances on their wrist via vibrotactile feedback
on the smartwatch (bottom center) or additionally use the white cane to detect obstacles on the ground (bottom right).

The system latency was measured at 400ms: 200ms from the
server and object detection model, with the remaining time
used by Wi-Fi and client communication.

B. Obstacle Avoidance

Apart from the voice and audio interaction, the system
provides vibrotactile feedback via the smartwatch on the user’s
hand, see Fig. 2 (D4). We utilize the built-in option of the
HMD to obtain a 3D mesh of the surroundings. The HMD’s
hand tracking feature enables detecting objects in front of the
hand. When extending the hand forward, raycasts from the
hand to the computed spatial mesh are used to determine the
distance to the closest object (e.g., a wall). The distance from
the collision is then handed to the external server and pushed to
the smartwatch on the user’s hand. Distances are indicated by
different levels of vibration intervals to provide the user with
an impression of distance. The vibration intervals are grouped
in four different strengths: very close objects (all 400 ms,
distances < 0.5m), close objects (all 800 ms, distances <
0.5m−0.8m), normal (all 1200 ms, distances < 0.8m−1.5m),
and away (all 1600 ms, distances < 1.5m− 2m).

V. USER STUDY

A. Design

To measure the usability and task load when locating objects
and navigating to their place, we conducted a within-subject
user study with BVIP. The participants were asked to complete
a search task either in a baseline condition (Cane) with their

white cane, with MR-Sense only (MixedReality), or with the
combination of the white cane and MR-Sense (Combined).
In the cane condition (Cane) they use their standard tool, the
white cane for navigating. For the MR condition (MixedReal-
ity) they only use MR-Senseand in the Combined condition
they use the white cane and MR-Sense.

B. Reproducible Study Apparatus

As a realistic and reproducible experimental setup, we
prepared a common indoor room with two shelves, a table
and a chair. All items were purchased at IKEA2. A banana,
a laptop, a bottle and a flower were chosen as test objects
to be located (these four objects are within the 80 categories
of the COCO dataset mentioned above). As search objects,
we selected a banana, a laptop, a bottle and a flower (these
four objects are within the 80 categories of the COCO dataset
mentioned above).

C. Study Procedure

Participants were welcomed and provided a detailed oral
briefing about the study using a standardized form. After secur-
ing their consent, we collected demographic details, assessed
their level of visual impairment, inquired about their experi-
ence with assistive aids, their familiarity and commitment to
virtual, augmented, or MR technologies [34], see Fig. 4.

2KALLAX, white, 77x39x77 cm; KALLAX, white, 42x39x112 cm; LIN-
NMON / ADILS Desk, darkgrey/black, 100x60x73 cm; GUNDE Chair, black
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Fig. 3: Floor plan of the test room (left) and highlighted object positions in red (left and right). The room measures 5.50m ×
3.50m and contains two shelves, a chair and a table. All items were purchased at IKEA.

Before the trials, participants explored the room for ten
minutes using the white cane. They were then introduced
to MR-Sense, featuring vibrotactile feedback and the HMD,
followed by a brief familiarization phase. Upon clarifying
any remaining doubts, experimental trials commenced with
randomized conditions to prevent bias.

In each trial, participants were required to locate four
objects within our standardized room, with the object orders
randomized across conditions for each participant. When us-
ing MR-Sense, the application reset for each trial, allowing
individual mapping without prior system preparation. The
sequence of conditions (Cane, MixedReality, Combined) was
randomly determined while ensuring a balanced allocation,
though an additional occurrence of Combined, MixedReality,
Cane was included due to an odd participant count. After
participants familiarized themselves with the room, the four
objects were placed in unknown locations, changing after each
condition while participants were absent.

Upon successfully locating the objects in a condition, time
taken and distance covered were recorded. Following this, the
experimenter completed questionnaires, integrating qualitative
feedback to provide context to the quantitative data. The
experiment concluded upon completing all conditions.

D. Measures

1) Subjective Measures: To measure the system’s usabil-
ity and the participants’ user experience and task load, we
assessed the system usability scale (SUS) [35], the User
Experience Questionnaire (UEQ) [36] and the raw NASA-
TLX [37], [38] questionnaire. To analyze the context of
these data with a covariate, the technology commitment was
measured using the technology commitment questionnaire [34]
consisting of twelve items each rated on a scale of one to five
(ranging from strongly disagree to strongly agree). For the
SUS we followed the standard procedure to rate the answers

Introduction

Study information

Demographics and trait measures

Acclimatization

End

Object search (randomized)
search for...
object 1, object 2, object 3, object 4

Experimental Trial

Measures
SUS, UEQ, raw NASA TLX | Time,
Distance | 2x positive and 2x negative
aspects, comments

Condition:
Cane,
MixedReality,
Combined

Fig. 4: Study Procedure with the individual phases intro-
duction, study information, and questionnaires assessed at
different points of the experiment.

from one to five (strongly disagree = 1, strongly agree = 5).
The UEQ was also answered based on the standard procedure
provided in the UEQ handbook (-3 to +3). As the participants
responded verbally, the raw NASA-TLX was answered in
percentage points (0% up to 100%) instead of ticks at scales.

2) Objective Measures: Objective data was collected to
evaluate performance by measuring the Time it took users to
complete each search task and the Distance they walked to
find all objects. This way, we were able to derive information
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TABLE I: Participants’ relevant data, i.e. their visual acuity
(no remaining vision (NV), right eye (RE), left eye (LE), both
eyes (BE), or FoV), used assistive aids, technology commit-
ment (TC) and virtual (VR), augmented (AR) or MR (MR)
experience denoted as XR. For the sake of anonymity and
since all participants were from the same area, we excluded
age and gender from the table.
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A NV - - ✓ ✓ ✓ - ✓ - - 35 -
B NV ✓ ✓ ✓ - ✓ - ✓ - - 36 -
C NV - ✓ - ✓ ✓ - ✓ ✓ - 37 -
D NV ✓ - ✓ ✓ - - ✓ ✓ - 39 ✓
E NV ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ 29 ✓
F NV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 42 ✓
G NV ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - 30 ✓
H NV ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ 33 ✓
I RE 1%, LE 2% - ✓ ✓ ✓ ✓ - ✓ - - 31 ✓
J BE ≤ 2% - ✓ - ✓ ✓ - ✓ ✓ - 22 ✓
K RE ≤ 5%, LE ≤ 15% - - - ✓ - - ✓ - - 35 ✓
L BE ≤ 2% - ✓ ✓ ✓ ✓ - ✓ ✓ - 30 ✓
M FoV≤ 5◦ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 42 ✓

about the temporal and spatial effectiveness of MR-Sense. The
walking distance was measured based on the HMD position.
Data acquisition began when a start signal was sent to the
HMD, and upon completion of the participant’s task, the
recording was stopped by the experimenter’s command.

3) Qualitative Comments: During and after the trials, the
experimenter noted the participants’ statements for each search
task and confirmed these logs with the participant at the end
of the condition. We further asked the participant to comment
on two positive and two negative aspects of the respective
condition (i.e., Cane, MixedReality, or Combined) and the
experimenter noted these comments.

E. Participants

In total N = 13 BVIP between 25 and 68 years (M =
50.08, SD = 14.99 years, six male and seven female) were
recruited via contacting associations for BVIP by posting
the call for participants in their monthly newsletter. Potential
participants called the authors and brief phone interviews were
conducted. The participants were asked about their level of
visual impairment and informed about the approximate time
the experiment will take. The characteristics for their level
of visual impairment varied, see Table I. Some participants
were blind from birth (N = 2), others suffered from retinal
detachment (N = 3), glaucoma (N = 2), cataract (N = 3),
or a combination of multiple diseases (N = 5) leading to a
low or zero level of vision. Participants who did not meet the
requirements were not included in the evaluation. One of the
participants with reaming vision (N = 5) counted as visually
impaired while the others are legally blind. We conducted a
Landolt-C vision acuity to ensure that all participants had
an equivalent perception and do not have any individual
advantages/disadvantages. Participants with light perception
were able to localize the windows in the room because of the

TABLE II: Results of the individual questionnaires system
usability scale, UEQ, and raw NASA-TLX. We report the
median for each condition as well as χ2(2)and p

Subjective Measures MdnCane MdnMixedReality MdnCombined χ2(2) p
SUS 85.00 77.50 85.00 1.920 0.382
Raw NASA-TLX 18.33 13.33 20.00 0.695 0.706

Mental demand 30.77 25.77 25.00 0.050 0.706
Physical demand 26.15 17.69 14.62 1.117 0.572
Temporal Demand 14.62 13.85 13.46 0.066 0.967
Performance 15.00 18.84 17.69 2.137 0.343
Effort 29.62 13.33 19.23 1.555 0.459
Frustration 10.38 9.23 10.38 0.300 0.861

UEQ
Attractiveness 1.67 2.00 2.17 2.130 0.344
Perspicuity 2.50 2.50 2.75 3.534 0.170
Efficiency 1.50 2.00 1.75 0.285 0.866
Dependability 1.50 1.75 2.00 0.136 0.934
Stimulation 1.75 2.00 2.50 4.044 0.132
Novelty −1.00 2.00 2.25 22.167 < 0.001

Objective Measures
Walking Time 105.29 201.62 162.49 6.615 0.036
Walking Distance 27.39 38.07 30.66 4.044 0.132

light influence. However, the objects for the search task were
not perceptible for them at a distance of more than 30 cm.

In terms of everyday life aids, many participants use a
color detection device (N = 7), braille display (N = 10),
a navigation belt (N = 2), or the white cane (N = 13), see
supplementary material. Regarding measuring their technology
commitment, most of our participants had a moderate technol-
ogy acceptance resulting in a mean of (M = 33.83, SD =
5.29, max = 42, max = 22). As listed in the supplementary
material some participants already had experience with virtual,
augmented or MR. Some participated in other experiments
using virtual reality (N = 6), and others tested commercial
glasses (N = 3) or assistive aids like a backpack stacked with
multiple sensors (N = 2).

F. Analysis Approach

To analyze the differences between the three conditions,
we performed Friedman tests and ANOVA. For pairwise
comparisons, we used non-parametric Wilcoxon signed-rank
or parametric t-tests, depending on the data distribution. If
the Shapiro-Wilk test indicated a non-normal distribution we
applied the Friedman Test, and if the result revealed a normal
distribution we used ANOVA.

VI. RESULTS

A. Subjective Measures

For the SUS, all conditions were rated above 68 which
is categorized as above average [35]. The total scores varied
between Cane and the other conditions, but according to the
results, see Table II, the differences were not statistically
significant (p > 0.05).

The total scores of the raw NASA-TLX showed that our
defined search task and all three conditions have a medium
level of workload (medium 10− 29). As reported in Table II,
neither the total score of the raw NASA-TLX nor the indi-
vidual scales reveal significant differences when assessing the
Friedman test (p > 0.05).

In terms of Novelty, a statistically significant difference
(p < 0.001) was found. Pairwise comparisons using Wilcoxon
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Fig. 5: Results of the conditions Cane, MixedReality, and
Combined for walking distance and walking time.

signed-rank tests with a Bonferroni correction for multiple
comparisons showed statistically significant differences in the
Novelty score. Specifically, the Novelty score was significantly
different between the conditions Cane/MixedReality (Z =
−3.149, p = 0.002) and Cane/Combined (Z = −3.150, p =
0.002).

In addition to the Friedman tests, ANOVA was conducted
for repeated measurements. These analyses confirmed the pre-
viously described findings. Furthermore, ANCOVA was used
to analyze the impact of age, order of conditions, onset time of
visual impairment or blindness, and technology commitment.
However, no statistically significant results were found.

B. Objective Measures

Fig. 5 shows that the Combined (35.49 ± 9.99) condition
resulted in a reduction in the mean and standard deviation of
the walking distance compared to the Cane (37.51±28.25) or
MixedReality (40.61± 17.40) condition. The mean±standard
deviation of time taken (in seconds) for Cane was 150.20 ±
110.51, for Mixed Reality it was 239.57 ± 98.08, and for
the condition Combined it was 183.22 ± 102.90. A shorter
completion time for the search task was observed in the
condition Cane when compared to MixedReality or Combined
conditions. However, a statistically significant difference was
noted only between the Cane and MixedReality condition
(p = 0.036). A Shapiro-Wilk test confirmed non-normal
distribution, therefore, we assessed a Wilcoxon signed-rank
test with a Bonferroni correction for multiple comparisons
indicating a significant effect for the measured walking time
for the condition Cane and MixedReality (Z = −2.831, p =
0.005). In addition to the Friedman tests, we analyzed the data
using ANOVA for repeated measurements. The results of the
analyses corroborated the above-stated findings.

C. Qualitative Comments

To ensure anonymity, the participants are named with ran-
domized numbers. Most of our participants pointed out that
the combination of our system and a white cane is helpful
and adds an additional dimension to the search field (N=10).
P5 mentioned that “With the glasses and heights indication I
don’t have to search everywhere from top to bottom” and P12
told “I get a new dimension for the search task”. Participants
with a remaining vision (P10 and P11) pointed out that a

large directional indicator in the form of an arrow would
be helpful to find the objects. P3 said “I would like to get
my walking direction painted towards the searched object”.
Participants P1, P7, P9, and P11 mentioned that the vibrotactile
feedback could be stronger, for example, P7 said “When I am
concentrated, the vibration was too soft. I often did not notice
it.”. Additionally, P9 criticizes the latency as ”the vibration
does not change fast enough when I move quickly”. Other
participants (e.g., P5, P6, P7, and P10) mentioned that the
current HMD is too heavy but the system is overall useful.

The participants mentioned that with the white cane, they
always have to memorize the whole room, while with our
system their cognitive load felt more focused on listening to
the clockwise and directional indications. P13 said “When I
walk only with the cane, I have to remember everything, with
the glasses I only have to remember the clock”. Moreover,
they found the height information very useful, P8 said “The
height information helps with the search.” and P13 agrees
“The information about the height is useful”.

VII. DISCUSSION

MR-Sense was developed in a participatory fashion and
aims to support BVIP in indoor search tasks. In our user
study, the participants performed a search task being exposed
to a reproducible study apparatus that allows for the replica-
tion of the study and benchmarking of future systems. We
measured the usability (SUS), user experience (UEQ), the
workload (raw NASA-TLX), taken time, walked distance, and
qualitative comments to observe the acceptance, advantages
and disadvantages of MR-Sense.

Our system will reduce the search time and walked distance
in object search tasks (H1). Regarding walking distance, we
can confirm quantitatively that the distance was shorter and ex-
hibited less variance in the Combined condition. This suggests
that the directional indication aids targeted search and reduces
the need for scanning the entire area while the white cane
supports walking towards this direction. However, our results
can not confirm this hypothesis statistically. We observed a
significant difference in measured walking time between the
baseline and the use of MR-Sense alone. Participants tended
to wait for MR-Sense to complete the voice output, resulting
in increased time compared to using the white cane alone.
Therefore, faster and more precise audio feedback is crucial.
Additionally, we observed that the Combined condition re-
duced walking time compared to MR-Sense alone.

We further hypothesized, the use of our (unfamiliar) system
will lead to a higher workload compared to the white cane as
daily assistive aid (H2). Regarding this hypothesis, the results
do not show any significant differences. The median score
is highest when using MR-Sense alone, while the Combined
condition has lower ratings. However, MR-Sense alone shows
less scatter compared to the baseline. Surprisingly, the Com-
bined condition has the lowest task load, but the differences
are not significant. Therefore, MR-Sense does not significantly
increase the task load. One can conclude, that MR-Sense was
received as a helpful add-on.
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Our results do not statistically support that the combination
of the white cane and MR-Sense will score higher compared to
only using our system in terms of usability and user experience
(H3). However, the results do not show any negative impacts
either and indicate that the participants generally rate the MR-
Sense system as well as the combination rather positively. In
particular, the combination of MR-Sense and the white cane
receives a comparable score in SUS compared to the baseline.
One can argue that the familiar assistive aid supports the
system usability as the participant feels safer than when only
using a novel system. Yet, the novel system as a standalone
also shows a SUS score above 68. The UEQ results for
Attractiveness, Perspicuity, Dependability, Stimulation were
rated higher by the participant for the condition Combined,
but not at a significant level. In terms of Attractiveness, a
higher scoring for Combined is observed, similar to using MR-
Sense only (MixedReality).

Qualitative feedback during the experiments indicated that
for some users, using only MR-Sense helps the perceived
efficiency since focusing on only one system makes the task
easier. For the condition Combined, the focus lies on two
systems, while for the baseline, the participants constantly
have to remember the whole room setup and possible search
areas. Also, high scores are observed for Stimulation using
both conditions containing MR-Sense. In the UEQ, Stimula-
tion is assessed using items such as “motivating”, “valuable”,
“interesting” or “exciting”, and indicates that the participants
were, on average, positive toward MR-Sense. The conditions
with MR-Sense lead to a significant increase in the UEQ
Novelty rating.

VIII. LIMITATIONS

Due to the small number of participants (N = 13), our
results must be generalized with caution. It is worth noting
that the prevalence of BVIP in the general population is only
around 6.7% in Europe and 6.0% in the United States [1], [39].
Especially blind people are rare in society with below 0.1%
in Germany and 0.2% in Russia [40]. Previous studies in this
research area have also reported comparable sample sizes [8],
[15], [41], [42]. Nonetheless, we emphasize the importance of
investigating the needs of these smaller populations, facilitat-
ing their enhanced participation in a society primarily tailored
to the sighted majority. Our study offers initial insights upon
which future research can build to further enhance the system.

Also, many participants expressed great interest in MR-
Sense. Learning and being able to use the system in medium
to long term requires more extensive studies. Also, using
the well-known white cane as a baseline is a challenging
comparison as some participants have been using it since their
teenage years.

In terms of object recognition, MR-Sense currently identi-
fies objects on a category level, so the most recent one per
category is mapped and mentioned.

IX. FUTURE WORK

Future user studies should potentially increase the sample
and further investigate the user interactions, e.g., number of
system activations, learnability, and (social) acceptability, as
well as long-term effects. Considering a ground truth without
an assistive aid could be of interest. However, we designed
our system as an addition, rather than a replacement of tools
such as the white cane. For future evaluations, our reproducible
study apparatus could be used with other assistive approaches
or extensions of MR-Sense addressing and comparing the ac-
cessibility for BVIP. Our user study setup is easily extendable,
by adding more objects or additional furniture to test in a more
cluttered setup. Regarding the technical implementation, the
vibrotactile feedback and the HMD’s bulky hardware should
be optimized. Furthermore, visual feedback can be opted-in
(e.g., an AR arrow pointing to the location or a flashing con-
tour) considering the severity of visual impairment. Moreover,
as head orientation can be measured, future adaptations of
MR-Sense could notify the user if the head position is too
adverse to recognize objects.

X. CONCLUSION

In this paper, we presented MR-Sensea consumer hardware-
based MR environment sensing assistant. The system utilizes
deep learning and 3D spatial understanding to provide multi-
modal feedback for BVIP in order to support them in search
and navigation tasks. MR-Sense was developed in participa-
tory fashion, ensuring that the BVIP perspectives and needs
were considered. To promote reproducibility and comparabil-
ity in future research, we also present a standardized study
apparatus. We used this setup to evaluate the performance
of our system in a practical search and navigation task.
In our final study with BVIP, we found that overall, the
subjective usability, user experience, and task load measures
showed positive results. Moreover, we reached similar ratings
and performance results to the white cane as the state-of-
the-art baseline. Our approach showcases relevant potentials
and challenges fostering following work towards employing
technology in accessibility.
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